2024

2nd Semester Examination (CCFUP: NEP) MATHEMATICS

Paper: MJ 2-T (Single Core Major)
[Algebra]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any ten of the following questions:

 $2 \times 10 = 20$

- 1. Two complex numbers z_1 , z_2 are such that $\left|z_1+z_2\right|=\left|z_1-z_2\right|$. Prove that principal amplitude of z_1 and z_2 differ by $\frac{\pi}{2}$ or $\frac{3\pi}{2}$.
- 2. State the Descartes' rule of sign.
- 3. Is the function $f(x) = x^2$, $\forall x \in [-1,1]$ injective? Justify

P.T.O.

your answer. Is it possible to set a new domain so that f can be injective there on?

- 4. Find the greatest value of a^2b^3 where a, b are positive real numbers satisfying 3a + 4b = 5. Find the values of a and b also.
- 5. Let $f: A \to B$ and $g: B \to C$ be two maps such that $g \circ f: A \to C$ is surjective. Prove that g is surjective.
- 6. Find the remainder when 12^{201} is divided by 7.
- 7. If *a*, *b*, *c* be positive real numbers, not all equal, prove that

$$(a^3 + b^3 + c^3) \left(\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3}\right) > 9$$

8. Say True or False with justification:

"Let $f:A \to B$ and $h, t:B \to C$ be mappings. Then $h \circ f = t \circ f$ implies h = t."

- 9. By Euclidean algorithm, find integers u and v such that 52u 91v = 78.
- 10. Let A be a real matrix of $m \times n$ order. Is the map $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by T(v) = Av a linear map? Why?
- 11. Let $\exp(z)$ denote the complex exponent value of the complex number z. Prove that $\exp(z_1 + z_2) = \exp(z_1)\exp(z_2)$ for complex numbers z_1 and z_2 .

- 12. Find a basis for the set of vectors in \mathbb{R}^3 lying in the plane x + 2y + z = 0.
- 13. Find A^{-1} by using elementary row operations, where

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & 4 \\ 3 & 3 & 7 \end{bmatrix}.$$

- 14. Find the special roots of the equation $x^{12} 1 = 0$.
- 15. Let A be a square real matrix of order 7, with characteristic polynomial $\lambda^7 2\lambda^6 20\lambda^5 24\lambda^4$. Find the eigen values of A and their multiplicity (algebraic).

Group - B

Answer any four of the following questions:

 $5 \times 4 = 20$

16. Define nth root of a non-zero complex number where $n \in \mathbb{N}$. Prove that $\left(z^{\frac{1}{n}}\right)^m = \left(z^m\right)^{\frac{1}{n}}$, where $z \in \mathbb{C}^*$ and $m, n \in \mathbb{N}$ such that $\gcd(m, n) = 1$. Hence show that $z^{p/q} = z^{m/n}$ where $p, q \in \mathbb{N}$ such that pn = mq.

1+3+1

17. If α , β , γ be the roots of the equation $x^3 + 3x + 1 = 0$, find the equation whose roots are $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$, $\frac{\beta}{\gamma} + \frac{\gamma}{\beta}$,

$$\frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}$$
.

P.T.O.

- 18. A relation β is defined on \mathbb{Z} by " $x \beta y$ if and only if $x^2 y^2$ is multiple of 5" for $x, y \in \mathbb{Z}$. Prove that β is equivalence relation on \mathbb{Z} . Show that there are three distinct equivalence classes.
- 19. State the Euler's theorem on congruence. Prove that $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$ where m, n are natural numbers and prime to each other and ϕ is the Euler's Phi function.
- 20. For what values of k, the planes x + y + 1 = 0, 4x + y z = k and $5x y 2z = k^2$ form a triangular prism?
- 21. If a, b, c, d be all positive real numbers and s = a + b + c + d, prove that

$$81abcd \le (s-a)(s-b)(s-c)(s-d) \le \frac{81}{256}s^4.$$

Group - C

Answer any two of the following questions:

 $10 \times 2 = 20$

22. (i) Prove that
$$\sin\left[i\log\frac{a-ib}{a+ib}\right] = \frac{2ab}{a^2+b^2}$$
.

(ii) If the equation $x^4 + px^3 + qx^2 + rx + s = 0$ has roots of the form $\alpha \pm i\alpha$, $\beta \pm i\beta$ where α and β are real, prove that $p^2 - 2q = 0$ and $r^2 - 2qs = 0$.

- (iii) Let ρ be an equivalence relation on a set S and $a, b \in S$. Then prove that cl(a) = cl(b) if and only if $a\rho b$.
- 23. (i) Use theory of congruences to show that $43 \mid 6^{n+2} + 7^{2n+1}$ for all $n \in \mathbb{N}$.
 - (ii) Use Cayley-Hamilton theorem to find A^{100} where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

- (iii) If α, β, γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\Sigma(\beta + \gamma \alpha)^3$.
- 24. (i) Find all vectors v in \mathbb{R}^4 that are mapped into the zero vector by the transformation $x \mapsto Ax$, $\forall x \in \mathbb{R}^4$, for the given matrix

$$A = \begin{bmatrix} 1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4 \end{bmatrix}.$$
 Is the vector $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ in

the range of the above transformation? Why or why not?

- (ii) Define eigen vectors of a square matrix A over a field F. Prove that two eigen vectors of A corresponding to two different eigen values are linearly independent. (3+3)+(1+3)
- 25. (i) Let A be a 3×3 real matrix having eigen values 5, 2, 2. The eigen vectors of A corresponding to

eigen values 5 and 2 are
$$c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $c \neq 0$ and

$$a \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, (a, b) \neq (0, 0)$$
 respectively. Find

the matrix A.

(ii) Find all real λ for which the rank of the matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & \lambda \\ 5 & 7 & 1 & \lambda^2 \end{bmatrix}$$
 is 2.

(iii) If gcd(a, b) = 1, then show that $gcd(a^2 - b^2, a^2 + b^2) = 1$ or 2. 4+3+3