

2023

1st Semester Examination (CCFUP: NEP)

PHYSICS

Paper: MI 1-T (Minor)

(Mathematical Physics and Mechanics)

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any *five* of the following questions: $2 \times 5 = 10$

- 1. Determine whether the differential Mdx + Ndy is exact or inexact, where M = 2xy + 3 and $N = x^2 y$.
- 2. Solve the second-order linear differential equation with constant coefficients: y'' 3y' + 2y = 0.
- 3. Write Green's theorem and Stoke's theorem. 2
- 4. What is Stoke's law in a high viscous liquid? 2
- 5. Define the directional derivative.
- 6. Write the relation between surface tension and the total surface energy per unit area.

P.T.O.

- 7. Find a unit normal to the surface $xy^2 + 3xyz = 5$ at the point (0, 1, 0).
- 8. Draw gravitational potential Energy and field intensity of a solid sphere with the distance from its centre point.

2

Group - B

Answer any four of the following questions:

 $5 \times 4 = 20$

- 9. A satellite of mass m = 1000 kg is in a circular orbit around Earth at an altitude of 200 km above the Earth's surface. Given, the mass of Earth $M_e = 5.97 \times 10^{24} \text{kg}$ and the gravitational constant $G = 6.67 \times 10^{-11} \text{N m}^2/\text{kg}^2$, calculate the velocity of the satellite in its orbit. Also, find the period of the satellite's orbit.
- 10. Derive Poiseuille's equation for flow of a liquid through a capillary tube.
- 11. Find the angle in between face diagonals of a cube with unit length using vector method.
- 12. Prove $\nabla(r^2) = 2\vec{r}$; symbols have their usual meaning.

5

13. What is an inertial frame of reference? What are non-inertial frames? Is any natural frame inertial? 2+2+1

14. A cylindrical body of radius R = 0.3m, mass M = 2 kg, and moment of inertia I = 0.03 kg.m² about its symmetry axis is rolling without slipping down an inclined plane with an angle of inclination $\theta = 30^{\circ}$. Calculate the acceleration of the body's centre of mass as it rolls down the plane. Assume there is no air resistance.

Group - C

Answer any one of the following questions:

 $10 \times 1 = 10$

- 15. Deduce the expression for the capillary rise of a liquid and hence deduce Jurin's law. Derive the expression for the pressure difference at inside and outside of a soap bubble.

 5+2+3
- 16. (a) Derive the relation between Young's modulus, shear modulus and poison's ratio; similarly find the relation between Young's modulus, bulk modulus and poison's ratio.
 - (b) A solid cylindrical steel wire of diameter 0.5 cm and length 2 m is fixed at one end and twisted by applying a torque of 10 N.m at the other end. If the shear modulus (modulus of rigidity) of steel is 8×10¹⁰ N/m², calculate the angle of twist in degrees and the maximum shear stress in the wire. 6+4