2023

1st Semester Examination (CCFUP: NEP) PHYSICS

Paper: MJ A1-T (Multidisciplinary Major)
(Mathematical Methods and Mechanics)

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any *five* of the following questions: $2 \times 5 = 10$

- 1. Define the term 'reduced mass' in the context of the two-body problem.
- 2. A spaceship travels at a speed of 0.8 c relative to an observer on Earth. The spaceship measures 100 meters in its rest frame. Calculate the length of the spaceship as observed from Earth.
- 3. A particle of mass m moves in a plane under the influence of a central force $F(r) = \frac{k}{r^2}$, where k is a constant. Show that the angular momentum L of the particle is conserved.

P.T.O.

- 4. A comet moves under the gravitational influence of the Sun. If the comet's orbit is highly eccentric, describe its motion at perihelion and aphelion.
- 5. A uniform rod of length L and mass M is rotating about an axis perpendicular to its length. Determine the radius of gyration k of the rod about this axis.
- 6. Write the order and power of the given differential

equation:
$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^3 = 5y^5$$
.

- 7. What will happen to the surface tension of water if detergent is added to the water? Explain your comment.
- 8. What is a pseudo force in a non-inertial frame of reference?

Group - B

Answer any four of the following questions:

 $5 \times 4 = 20$

- 9. Derive Poiseuille's equation for flow of a liquid through a capillary tube.
- 10. A cylindrical body of radius R = 0.3 m, mass M = 2 kg, and moment of inertia I = 0.03 kg m² about its symmetry axis is rolling without slipping down an inclined plane with an angle of inclination $\theta = 30^{\circ}$. Calculate the acceleration of the body's center of mass as it rolls down the plane. Assume there is no air resistance.

- 11. Find the angle in between face diagonals of a cube with unit length using vector method.
- 12. Show that $\vec{V} = (2xy + z^3)\hat{i} + x^2\hat{j}$, $3xz^2\hat{k}$ is a conservative field. Find its scalar potential φ such that $\vec{V} = \vec{\nabla} \phi$. Find the work done by the force \vec{V} in moving a particle from (1, -2, 1) to (3, 1, 4).
- 13. (a) Show that for homogeneous isotropic medium $Y = 2n(1+\sigma)$. Symbols have their usual meaning.
 - (b) Calculate the difference between the pressures inside and outside a spherical soap bubble of diameter 1 inch blown with a solution of surface tension 25 dynes per cm.
 3+2
- 14. (a) Find the unit tangent vector to any point on the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$.

(b) Evaluate
$$\frac{d}{dt} \left(\mathbf{V} \cdot \frac{d\mathbf{v}}{dt} \times \frac{d^2\mathbf{v}}{dt^2} \right)$$
. 3+2

Group - C

Answer any one of the following questions:

 $10 \times 1 = 10$

15. (a) Solve the following equation by the use of suitable integrating factor $xdy - ydx + x^2dx = 0$.

P.T.O.

- (b) If $\vec{A} = 5u^2\hat{i} + u\hat{j} u^3\hat{k}$ and $\vec{B} = (\sin u)\hat{i} (\cos u)\hat{j}$, find $\frac{d}{du}(\vec{A}.\vec{B})$ and $\frac{d}{du}(\vec{A} \times \vec{B})$.
- (c) Derive the Galilean transformations for the coordinates (x', y', z') as observed from a moving reference frame S' relative to an inertial frame S. 3+5+2
- 16. (a) Find the gravitational potential and gravitational field due to a uniform solid sphere (i) at an external point and (ii) at an internal point.
- (b) What is capillary action? Deduce an expression for the capillary rise h of a liquid of density ρ (θ = angle of contact). 5+5