2024

2nd Semester Examination MATHEMATICS (Honours)

Paper: GE 2-T

[Algebra]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any ten questions:

2×10=20

- (a) Find the principal value of the complex number z = -1 i.
- (b) Show that the equation $x^3 3x^2 9x + 27 = 0$ has a multiple root.
- (c) Use Descartes's rule of sign to show that the equation $x^4 x + 3 = 0$ has no real root.
- (d) Show that if a function $f \circ g$ is injective and g is surjective function, then f is an injective function.
- (e) Find two integers u and v satisfying 54u + 24v = 30.

P.T.O.

V-2/33 - 400

- (f) If x be real, prove that $i \log \frac{1+ix}{1-ix} = -2 \tan^{-1} x$.
- (g) Prove that the product of any three consecutive integers is divisible by 6.
- (h) Find the value of k for which the set $S = \{(k,1,1), (1,k,1), (1,1,k)\}$ is linearly independent.
 - (i) Do the polynomials $x^3 2x^2 + 1$, $4x^3 x + 3$ and 3x 2 generate $P_3(R)$? Justify.
- (j) Let P be an orthogonal matrix with det(P) = -1. Prove that -1 is an eigen value of P.
- (k) Find the greatest value of b^3a^2 where a, b are positive real number such that a + b = 10. Determine the values of a, b for which the greatest value is attained.
 - (1) Using Euler's theorem, find the unit digit of 3100.

(m) Find the rank of the matrix
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & 2 \\ 2 & 6 & 2 \end{bmatrix}$$
.

(n) Express the matrix A^{-1} in terms of A, where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{bmatrix}.$$

- (o) If a, b, c, d be positive real numbers, not all equal, prove that $(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)>16$.
- 2. Answer any four questions:

 $5 \times 4 = 20$

(a) Solve the equation by Cardan's method:

$$x^3 - 15x^2 - 33x + 847 = 0.$$

(b) Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}. \text{ Hence find } A^{-1}.$$

(c) Find the dimension of the subspace S of \mathbb{R}^3 defined by:

$$S = \{(x, y, z) \in R^3 : x + 2y = z; 2x + 3z = y\}.$$

- (d) If $(2+\sqrt{3})^n = I+f$ where I and n are positive integers and 0 < f < 1, show that I is an odd integer and (1-f)(I+f) = 1.
- (e) If α , β , γ be the roots of the equation $x^3 + 3x + 1 = 0$, find the equation whose roots are

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}, \quad \frac{\beta}{\gamma} + \frac{\gamma}{\beta}, \quad \frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}.$$

- (f) Show that the map $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by, T(x,y,z) = (x+y+z,2x+y+2z,x+2y+z), $\forall x, y, z \in \mathbb{R}$ is linear. Find the matrix representation $[T]_B^{B'}$ of T with respect to the ordered bases $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ and $B' = \{(1,1,0), (1,0,1), (0,1,1)\}$.
- 3. Answer any two questions:

 $10 \times 2 = 20$

- (a) (i) Show that gcd(a+2, a)=1 or 2 for every integer a.
 - (ii) Verify whether the set $\{3x-1, x^3+1, x-3\}$ is a basis for the vector space $P_3(\mathbb{R})$.
 - (iii) Prove that $n^4 + 4^n$ is a composite number for all n > 1. 3+3+4
- (b) (i) Use principle of mathematical induction and establish the formula for all integers n≥1,
 1²+3²+5²+···+(2n-1)² = 4n³-n/3.
 - (ii) Show that the eigen vectors corresponding to the distinct eigen values are linearly independent. 6+4

(c) (i) Using Cayley-Hamilton theorem for the matrix A, compute A^{50} .

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- (ii) Show that the eigen value of an orthogonal matrix has a unit modulus. 5+5
- (d) (i) If $d = \gcd(a, m)$, prove that $ax \equiv ay \pmod{m} \Leftrightarrow x \equiv y \pmod{\frac{m}{d}}.$
 - (ii) Solve by Ferrari's method: $x^4 + 4x^3 - 6x^2 + 20x + 8 = 0.$ 4+6