Total Pages: 4

B.Sc./5th Sem (H)/CHEM/23(CBCS)

2023

5th Semester Examination CHEMISTRY (Honours)

Paper: C 11-T

[Inorganic Chemistry-IV]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any five questions:

 $2 \times 5 = 10$

- 1. $\left[Co(H_2O)_6 \right]^{2+}$ is light pink whereas $\left[CoCl_4 \right]^{2-}$ is deep blue Explain.
- 2. An tetrahedral complexes are low spin Explain.
- 3. Why Co_3O_4 adopt a normal spinal rather than inverse spinal structure?
- 4. What do you mean by "Lanthanide Contraction"? Explain the reason behind it.

P.T.O.

- 5. Determine the Ground state term symbol for Dy^{3+} ion.
- 6. Actinides have high complex formation ability than Lanthanides Explain.
- 7. What do you mean by "Mischmetal"?
- 8. Both $\left[Ni(CN)_4\right]^{2-}$ and $\left[Ni(CO)_4\right]$ are diamagnetic but they have different geometry Explain.

Group - B

		Answer any <i>four</i> questions: $5\times4=2$	0
9.	(a)	Define Russell-Saunders' coupling.	2
	(b)	Discuss Ion exchange method for separation of Lanthanides.	of 3
0.	(a)	Discuss structure and magnetic property of $Fe(CO)_5$ using VBT concept.	of 3
	(b)	A deep blue solution contain Co (II) in concentrate HCl gradually turns pale pink on addition of excess H_2O — why?	
l1.	(a)	Explain the energy ordering $\Delta_t < \Delta_0 < \Delta_{sp}$ for	or
	•	coordination compounds.	3

(b) Ionisation enthalpies of Ca, Pr and Nd are higher than Th, Pa and U, respectively. — Explain. 2

12.	(a)	Lanthanides exhibit +3 oxidation state in general,
		while actinides can show variable oxidation state —
		Explain. 3
	(b)	Discuss about the Laporte selection rule for

- (b) Discuss about the Laporte selection rule for electronic spectral transition.
- 13. (a) $K_2[NiF_6]$ is diamagnetic, while $K_3[CoF_6]$ is paramagnetic though both have same d-electron configuration Explain on the basis of CFT. 3
 - (b) Explain the variation of hydration energies of the divalent 3d series transition metal halides. 2
- 14. (a) Predict the type of spinel structure for $NiFe_2O_4$ with explanation.
 - (b) 10 Dq value of $\left[Rh(H_2O)_6\right]^{3+}$ is higher than $\left[Co(H_2O)_6\right]^{3+}$. Justify.

Group - C

Answer any *one* question: $10 \times 1 = 10$

- 15. (a) Why many transition metal hydroxide is readily oxidised by atmospheric oxygen?
 - (b) Explain why OH^{\odot} is a weak field ligand than H_2O .

P.T.O.

(c) State Jahn-Teller theorem. In which of the following electronic configuration, this effect would be observed and why?

$$t_{2g}^{3}eg^{1}$$
 or $t_{2g}^{6}eg^{2}$. 1+2

- (d) The crystal field splitting energy, Δ_0 in $\left[Ti(H_2O)_6\right]$ is 243 kJ mol⁻¹. Find out its absorption maxima in nm.
- 16. (a) Draw the orgel diagram for $\left[Ni(H_2O)_6\right]^{2+}$ complex and calculate the value of Δ_0 .
 - (b) The colour of trans- $\left[Co(en)_2 F_2\right]^+$ is less intense than that of cis - $\left[Co(en)_2 F_2\right]^+$ Explain. 2
 - (c) Find the expression for CFSE for d⁶ and d⁷ ion in weak and strong octahedral field in terms of Dq and Pairing Energy (PE).
 3
 - (d) The magnetic moment of $Vo(acac)_2^*$ is 1.7 BM. Explain.